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Properties of systems driven by white non-Gaussian noises can be very different from these of systems
driven by the white Gaussian noise. We investigate stationary probability densities for systems driven by
�-stable Lévy-type noises, which provide natural extension to the Gaussian noise having, however, a new
property, namely a possibility of being asymmetric. Stationary probability densities are examined for a particle
moving in parabolic, quartic, and in generic double well potential models subjected to the action of �-stable
noises. Relevant solutions are constructed by methods of stochastic dynamics. In situations where analytical
results are known they are compared with numerical results. Furthermore, the problem of estimation of the
parameters of stationary densities is investigated.
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I. INTRODUCTION

Behavior of many natural systems in contact with their
surroundings can be described within a stochastic picture
based on Langevin equations. The basic equation of this type
reads

ẋ�t� = f�x� + ��t� , �1�

where f�x� is the deterministic “force” representing the inter-
nal dynamics of the system and ��t� is the “noise” describing
its interaction with its complex surrounding �heat bath�. In
many cases this noise can be considered as white and Gauss-
ian, giving rise to the classical Langevin approach used in
the analysis of Brownian motion. The whiteness of the noise
�lack of temporal correlations� corresponds to the existence
of time-scale separation between the dynamics of a relevant
variable of interest x�t� and the typical time scale of the
noise. White noise can be thus considered as a standard sto-
chastic process that describes in the simplest fashion the ef-
fects of “fast” surrounding. On the other hand, the Gaussian
nature of the noise is usually guaranteed by assuming the
surrounding bath being composed of many practically inde-
pendent subsystems and by the fact that the interaction of x
with each of these subsystems is bounded. The first assump-
tion allows for considering the noise as being a sum of many
independent random contributions �in thermodynamical
limit—infinitely many�, which mathematically corresponds
to the statement that its probability distribution is infinitely
divisible and stable. The second assumption chooses the
Gaussian distribution as the only one possessing finite dis-
persion. However, the assumption that the perturbations in
the system’s dynamics due to interactions with bath are de-
scribed by white Gaussian noise is not always appropriate

when describing real processes where each of the assump-
tions concerning the noise �e.g., its whiteness or its Gaussian
distribution� can be violated. In various phenomena in phys-
ics, chemistry or biology �1,2� the noise can still be inter-
preted as white �i.e., with stationary, independent incre-
ments� and distributed according to a stable and infinitely
divisible law, however, the distribution of the noise variable
� is registered as following not a Gaussian, but rather a more
general, Lévy probability distribution. Such situations were
addressed, for example, in Refs. �3–16�. The present work
discusses some further properties of Lévy flights in external
potentials with a focus on astonishing aspects of noise-
induced bifurcations and explores in more detail features of
stationary states in Langevin systems under the influence of
asymmetric Lévy noises.

Lévy distributions L�,��� ;� ,�� correspond to a four-
parametrical family of the probability density functions char-
acterized by their Fourier transforms �characteristic functions
of the distributions� ��k�=�−�

� eik�L�,��� ;� ,��d� being
�17–19�

��k� = exp�ik� − ���k���1 − i� sgn�k�tan
��

2
	
 �2�

for �� �0,1�� �1,2� and

��k� = exp�ik� − ��k��1 + i�
2

�
sgn�k�ln�k�	
 �3�

for �=1 �17–19�. Here the parameter � �where �� �0,2�� is
the stability index of the distribution describing �for �	2�
its asymptotic “fat” tail characteristics yielding
L�,��� ;� ,������−�1+�� for large �. The parameter � charac-
terizes a scale and �� �−1,1� defines a skewness �asymme-
try� of the distribution, whereas � denotes the location pa-
rameter. As it is clear from Eq. �2�, Gaussian distribution
corresponds to a special case of a Lévy law for �=2, with �
interpreted now as a mean and � as the dispersion of the
distribution. However, this special case is somewhat degen-
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erated: the dependence of the distribution on � disappears
due to the fact that tan�=0, so that all Gaussian distributions
are symmetric. In general cases strongly asymmetric distri-
butions �up to extreme, one-sided ones� may appear, see,
e.g., �15,20,21�. Such realms are discussed much less exten-
sively than the cases of symmetric noises �3,4,12–14�.

In many situations, one is interested not in the individual
properties of the trajectories x�t� but, instead, in the one-
point probability distributions defined on ensemble of trajec-
tories: P�x , t�= �
�x−x�t��
� at some given time t. For a sto-
chastic system described by the Langevin equation with an
additive white Lévy noise forcing, the distribution function
P�x , t� of the variable x�t� fulfills the associated fractional
differential Fokker-Planck equation. Stationary states �if they
exist� can then be read from the asymptotic time independent
solutions P�x�=limt→� P�x , t�. Such solutions were dis-
cussed, e.g., in �3,12–14�, where analysis of Lévy flights in
harmonic or superharmonic potentials has been presented.
Nevertheless, the discussion presented there is far from being
complete, since only symmetric Lévy distributions have been
considered. In the present work we pay special attention to
asymmetric ones.

In this paper we focus on stationary states for a particle
moving in quadratic, quartic, and double well potentials sub-
jected to �-stable white noises. Theoretical descriptions of
such systems are based on the Langevin equation and/or the
Fokker-Planck equation, which in general is of the fractional
order �22�. The model under discussion is presented in Sec.
II. Section III discusses obtained results, which are divided
into three subsections regarding results for parabolic and
quartic potential �Secs. III A and III B� and double well po-
tential model �Sec. III C�. The paper closes with concluding
remarks �Sec. IV�. Additional information, regarding the
problem of the dimensionality of the Langevin equation is
included in the Appendix.

II. MODEL

Let us consider a motion of an overdamped particle in a
field of a potential force, so that Eq. �1� takes the form of

ẋ�t� = − V��x� + ��t� , �4�

and ��t� denotes a Lévy stable white noise process
�3,4,9,23,24�. The value of the stochastic process defined by
Eq. �4� can be calculated as �18,25�

x�t� = x�0� − �
0

t

V„x�s�…ds+�
0

t

��s�ds

= x�0� − �
0

t

V„x�s�…ds + �
0

t

dL�,�. �5�

Here, the integral �0
t ��s�ds��0

t dL�,� defines a generalized
Wiener process �3,4,9,23� that is driven by a Lévy stable
noise, whose increments are distributed according to a stable
density with the index �. The Lévy noise is a formal time
derivative of the generalized Wiener process. For the time
step of integration �t, the increments of the generalized
Wiener process are distributed according to the distribution

L�,���x ;���t�1/� ,�=0� �18,19,26,27�. We discuss the over-
all range of parameters �� �0,2� ; �� �−1,1� excluding the
case of �=1 with ��0, for which the numerical results are
unreliable due to well known numerical instabilities
�6,18,19,28�. Putting the location parameter of the distribu-
tion to zero does not influence the generality of our results:
Taking location parameter � to be nonzero is equivalent to
adding a linear term to the potential �constant drift�. Sample
�-stable probability densities are presented in Fig. 1.

The Langevin equation �4� describes the evolution of a
single realization of the stochastic process �x�t��. Random
numbers distributed according to a canonical form of char-
acteristics functions given by Eqs. �2� and �3� can be gener-
ated using the Janicki-Weron algorithm �28,29�. More details
on the numerical scheme of integration of stochastic differ-
ential equations with respect to �-stable noises can be found
elsewhere �7,9,18,19,26�.

For ��1, Eq. �4� is associated with the following frac-
tional Fokker-Planck equation �FFPE� �30–34�:

�P�x,t�
�t

= −
�

�x
�� − V��x,t��P�x,t� + ��� ��

� �x��
P�x,t�

+ � tan
��

2

�

�x

��−1

� �x��−1 P�x,t�
 , �6�

where the fractional �Riesz-Weyl� derivative can be under-
stood in the sense of the Fourier transform �3,12,13,35�

��

��x�� f�x�=−�−�
� dk

2�e−ikx�k�� f̂�k�. The fractional derivatives in
Eq. �6� originate from the form of the characteristic function
�see Eqs. �2� and �3�� of Lévy stable variables �1,30,32,36�.
The nonzero asymmetry leads to an additional, asymmetric
diffusion term including an even, reflection-invariant Riesz-
Weyl operator and an odd first derivative which changes its
sign under the x→−x transformation. The overall order of
derivatives in the diffusion terms is the same, namely, �.
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FIG. 1. Sample �-stable probability density functions �PDF�
with �=1.5 �left panel� and �=0.9 �right panel�. For �=0 distribu-
tions are symmetric, while for �= ±1 they are asymmetric func-
tions. The support of PDFs for the fully asymmetric cases with �
= ±1 and �	1 �right panel� assumes only negative values for
�=−1 and only positive values for �=1. Note the differences in the
positions of the maxima for �	1 and ��1.
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In the following, the value of the location parameter � is
set to zero, which guarantees that for ��1 Lévy noise
present in Eq. �4� is strictly stable and standard numerical
methods of integration of stochastic differential equations
with respect to �-stable noises �namely, the generalization of
the Euler scheme� can be used �18,19,26�.

The behavior of a system where a particle is subject to the
additive, white, strongly non-Gaussian noise could be very
different from the behavior in the Gaussian regime �16�. In
the Gaussian case, any potential well such that V�x�→ +�
for �x�→ +�, even the piecewise linear one, is sufficient to
produce bounded states, i.e., the ones with a finite dispersion
of the particle’s position. On the contrary, for the Lévy noises
with �	2, the potential, which grows faster than quadrati-
cally in x is required to produce bounded states. Furthermore,
in the Gaussian case stationary probability distributions for a
single-well potential are unimodal, which is not always true
for a Lévy stable noise with the stability index �	2 �12,13�.
Qualitative and quantitative differences are caused by the
fact that stable distributions are heavy tailed and allow larger
noise pulses with a higher probability than the Gaussian dis-
tribution �27�. Moreover, stationary probability distributions
for the additive Lévy noises ��	2�, if they exist, are not of
the Boltzmann-Gibbs type �12,13,20,37,38�.

In the following sections properties of stationary probabil-
ity distributions for systems perturbed by the general Lévy
noises are discussed. The performed simulations corroborate
earlier theoretical findings �3,12–14�. Furthermore, the influ-
ence of the nonzero asymmetry parameter � on the shape of
stationary distributions is discussed.

III. STATIONARY STATES FOR A “LÉVY-BROWNIAN”
PARTICLE

The stationary probability densities P�x� can be obtained
either by analytically solving Eq. �6� �which is unfortunately
possible only for a quite restricted set of special cases� or,
otherwise, numerically. In such a case, there are two ap-
proaches possible: either using the discretization of Eq. �6�
�12,14,39,40� or employing a Monte Carlo method based on
simulation of Eq. �4� �18,19,25,26�. For the Gaussian noise
the solutions of the Fokker-Planck equation can be readily
obtained by using shooting methods and discretization tech-
niques �41�. For the general Lévy case such solutions can be
constructed by discretization of Eq. �6�, which converts a
partial differential equation to a discrete Markov chain
�40,42�. However, this approach has a drawback of slow con-
vergence and possible instability for �	2 �43�, and conse-
quently, was not used here. Thus, our data are based on
Monte Carlo simulations; our method of solution of the
Langevin equation is based on the slightly modified standard
integration scheme for stochastic equations of type �4� driven
by �-stable Lévy-type noises �18,19,26� �see below�. Sta-
tionary PDFs were extracted from ensembles of, typically,
N=106 trajectories of a given length Tmax=10. The value of
Tmax was chosen by trial and comparison of numerical esti-
mates of P�x ,Tmax� for various Tmax �sufficiently long times
Tmax are requited to let P�x ,Tmax� reach stationarity�. A prob-
lem related to the choice of the simulation time Tmax is the

choice of the time step of integration �t. The simulations
have been performed with the time step of integration �t
=10−3. Such a choice of �t guarantees a compromise be-
tween accuracy and the computational cost of simulations. It
is also suggested by earlier studies �6,7,9,11,16�. Further-
more, �t=10−3 makes the x domain, in which the general-
ized Euler scheme can be used, sufficiently large �see Sec.
III B�.

For �=2 �and an arbitrary asymmetry parameter ��, the
random force term in the Langevin equation �4� represents a
Gaussian white noise ���t���s�
�=2=2
�t−s� and the associ-
ated Smoluchowski-Fokker-Planck equation governing evo-
lution of the probability density P�x , t� reads

�P�x,t�
�t

=
�

�x
V��x�P�x,t� + �2 �2

�x2 P�x,t� , �7�

with a stationary solution assuming the standard Boltzmann-
Gibbs form

P�x� = N exp�−
V�x�
�2 
 , �8�

of finite mean and variance. In contrast, Lévy flights in ex-
ternal potentials exhibit unexpected properties �3,12,14,36�
and their stationary PDFs can be shown to possess finite first
and second moments only if the imposed deterministic forces
are derived from steeper than the parabolic potentials �see
Fig. 2�. As an example, in Fig. 3 stationary PDFs for a par-
ticle moving in the quartic potential subject to the white
Gaussian noise �left panel� and white Cauchy noise �right
panel� are compared. Numerical results were constructed
from the ensemble of final positions reached after the long
time Tmax obtained from the simulation of the Langevin
equation �4� with �=2, �=1, and �2=1 �cf. Sec. III B�. In
forthcoming sections we are addressing this point by inves-
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FIG. 2. Exemplary shapes of potential wells used in the study.
The examination of stationary states of the system perturbed by
�-stable Lévy-type noises has been performed for a generic double-
well potential model �V�x�=x4 /4−x2 /2�, as well as for parabolic
�V�x�=x2 /2� and quartic �V�x�=x4 /4� potentials. As discussed in
the text, the confinement of trajectories �observation of bounded
states� for �	2 is possible only if the potential slopes are steeper
than for a harmonic case.
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tigating Langevin dynamics driven by asymmetric Lévy
white noises.

A. Parabolic potential and algorithm testing

For �=1, the fractional Fokker-Planck equation �6� can
be rewritten in the Fourier space in the form of

� P̂�k,t�
�t

= V̂P̂�k,t� − �k��P̂�k,t� , �9�

where V̂ is the operator giving the Fourier representation of
the potential, which can be found in a closed form only in the
simplest cases, e.g., for polynomial potentials. In the case of
asymmetric distribution the analogous equation reads

� P̂�k,t�
�t

= V̂P̂�k,t� − �k���1 − i� sgn�k�tan
��

2

P̂�k,t� .

�10�

The choice of the parabolic potential V�x�=x2 /2 �see Fig.

2� results in its Fourier transform V̂=−k �
�k . For symmetric

�-stable noises, the corresponding equation for the stationary
PDFs is �12,13�

� P̂�k�
�k

= − sgn k�k��−1P̂�k� , �11�

and its solution in the Fourier space reads

P̂�k� = exp�−
�k��

�
	 , �12�

i.e., the stationary solution is a symmetric Lévy distribution
�see Eqs. �2� and �3��. Consequently, the variance of the sta-
tionary solution is infinite. Therefore, the parabolic potential
is not sufficient to produce bounded states for a particle sub-

ject to the action of a Lévy noise �3,12–14,36�. For potentials
steeper than the parabolic well, the confinement of superdif-
fusive trajectories becomes possible but, additionally, the ad-
ditive Lévy white noise could induce bimodality in the sta-
tionary PDF.

For general �-stable driving ���1� the stationary solu-
tions obey the equation

� P̂�k�
�k

= − sgn k�k��−1P̂�k� + i� tan
��

2
�k��−1P̂�k� , �13�

and its solution is

P̂�k� = exp�−
�k��

�
�1 − i� sgn�k�tan

��

2
	
 . �14�

For the nonzero asymmetry parameter �, like for the sym-
metric noise, the stationary probability density function is a
stable law with the same stability index � and the asymmetry
parameter � and a different scale parameter ��=��−1/� �here
��=�−1/��. The location parameter � of the resulting distri-
bution is zero. The existence of these analytical results al-
lows one to use the case of parabolic potentials as a test
bench for our simulation algorithms.

Thus, for the testing purposes, large samples of long real-
izations of the stochastic process given by Eq. �4� were con-
structed. Using these samples the values of the distribution
parameters have been estimated applying special software
�44�. Estimated values of distribution parameters are in good
agreement with theoretical values �see Tables I–III�. Tech-
niques of estimation of the stable distribution parameters are
based on the evaluation of quantiles and characteristic func-
tions, and on maximum likelihood methods �45� or the direct
use of time series �46�. Results obtained by quantile methods
and characteristic function estimation seem to be more con-
sistent with theoretical values than results following from
maximum likelihood �see Tables I–III�. The largest differ-
ences between theoretical and estimated values of parameters
are observed for the location parameter �. In some situa-
tions, marked with �, the program used �44� warns about
numerical problems in the evaluation of the distribution pa-
rameters. To check whether results are influenced by the
length of simulation, results for Tmax=10 and Tmax=15 were
compared. Estimated values of parameters for both values of
Tmax are consistent. Therefore, only results for Tmax=15 are
presented �see Tables I–III�.

B. Quartic potential

For the quartic potential V�x�=x4 /4 �V̂=k �3

�k3
� and sym-

metric �-stable noises, the fractional Fokker-Planck equation
in the Fourier space has the form

�3P̂�k�
�k3 = sgn k�k��−1P̂�k� . �15�

The solution of Eq. �15� is known for �=1 �12,13�,
P̂�=1�k�= 2

�3
exp�− �k�

2
�cos� �3�k�

2 − �
6

�, and the corresponding sta-
tionary solution in the real space reads

0
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FIG. 3. Stationary solutions to the Smoluchowski-Fokker-
Planck and to the fractional Fokker-Planck equations associated
with the diffusion ��=2, left panel� and superdiffusion ��=1, right
panel� in a quartic potential V�x�=x4 /4. For �=2 numerical results
were constructed by discretization techniques and shooting methods
�41�. Simulation parameters: N=106, �t=10−3, Nbins=100, and
Tmax=10.
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P�=1�x� =
1

��1 − x2 + x4�
. �16�

The stationary solution �16� of Eq. �15� have two main prop-
erties. First of all, the stationary PDFs are not of the Boltz-
mann type, as typical for the stationary states for a system
driven by Lévy white stable noises with the stability index
�	2 �20�. Additionally, the stationary probability density
function for a quartic Cauchy oscillator is bimodal, with ex-
tremes located at x=±1/�2 �12–14�. Figure 3 presents sta-
tionary PDFs obtained by the simulation of the Langevin
equation �4� along with theoretical lines for the Gaussian
�left panel� and Cauchy �right panel� quartic oscillators.
Moreover, the parabolic addition to the quartic potential
V�x�=ax2 /2+x4 /4 �a�0�, can diminish or even destroy the
bimodality of the stationary PDF �12–14�. Finally, for the
general �-stable driving and the quartic potential the station-
ary density fulfills

�3P̂�k�
�k3 = sgn k�k��−1P̂�k� − i� tan

��

2
�k��−1P̂�k� . �17�

Quartic potentials pose some additional difficulties to Monte
Carlo simulations making it necessary to slightly modify the

standard techniques of integration of stochastic differential
equations driven by �-stable Lévy-type noise �18�. Due to
heavy tails of stable distribution large random pulses are
much more likely to occur than in the Gaussian distribution

TABLE I. Theoretical and estimated values of stationary PDF
parameters. The numbers in bold indicate theoretical values of pa-
rameters, following rows estimated parameters using quantile
evaluation �second row�, characteristic function evaluation �third
row�, and maximum likelihood method �fourth row�. Distributions’
parameters were estimated by the use of �44�. Simulations’ param-
eters: Tmax=15, �t=10−3. Samples contain not less than 106 ele-
ments. � indicates cases when the software applied warned about
some problems in estimation of sample parameters.

� � � �

0.5 −1 4 0

0.502 −0.964 4.186 −5.43
10−2

0.499 −1.000 3.978 −1.39
10−2

0.500* −0.997 2.541 −6.81
10−2

0.5 �0.5 4 0

0.500 −0.500 3.986 −1.76
10−3

0.500 −0.498 3.992 −1.08
10−2

0.514 −0.499 4.023 6.19
10−2

0.5 0 4 0

0.500 0.001 3.993 −6.16
10−3

0.501 0.000 3.998 6.24
10−3

0.515 0.000 4.055 −1.68
10−3

0.5 0.5 4 0

0.502 0.503 3.988 −3.00
10−2

0.500 0.502 3.979 −1.35
10−2

0.515 0.500 4.020 −6.52
10−2

0.5 1 4 0

0.503 0.981 4.104 −2.04
10−2

0.500 1.000 3.986 5.90
10−4

0.462* 0.990 7.844 −0.19

TABLE II. Continuation of Table I ��=1.1�.

� � � �

1.1 �1 0.92 0

1.096 −1.000 1.237 −2.82

1.097 −1.000 0.917 −0.2

1.100* −1.000 0.917 2.70
10−4

1.1 �0.5 0.92 0

1.099 −0.505 0.916 −4.15
10−2

1.101 −0.501 0.917 1.58
10−2

1.100 −0.501 0.917 −5.55
10−3

1.1 0 0.92 0

1.098 −0.001 0.917 −7.83
10−3

1.098 0.002 0.916 8.93
10−3

1.099 −0.001 0.917 −5.05
10−3

1.1 0.5 0.92 0

1.098 0.497 0.916 4.00
10−2

1.099 0.496 0.917 1.84
10−2

1.099 0.496 0.917 2.33
10−2

1.1 1 0.92 0

1.101 1.000 1.237 2.41

1.100 1.000 0.918 −1.68
10−2

1.100* 1.000 0.918 4.17
10−3

TABLE III. Continuation of Table I ��=1.8�.

� � � �

1.8 �1 0.72 0

1.798* −0.994 0.721 1.25
10−3

1.800 −1.000 0.722 1.54
10−3

1.829 −0.990 0.723 2.03
10−2

1.8 �0.5 0.72 0

1.806 −0.531 0.723 −2.02
10−3

1.799 −0.498 0.722 −4.49
10−4

1.849 −0.545 0.729 1.17
10−2

1.8 0 0.72 0

1.800 −0.002 0.722 −1.08
10−3

1.798 −0.001 0.721 −5.69
10−4

1.838 0.001 0.727 −2.69
10−4

1.8 0.5 0.72 0

1.799 0.491 0.722 −2.50
10−3

1.801 0.496 0.721 −2.43
10−3

1.850 0.536 0.728 −1.46
10−2

1.8 1 0.72 0

1.799 0.995 0.720 1.72
10−3

1.798 0.988 0.720 6.72
10−4

1.830* 0.990 0.722 −1.74
10−2
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leading to very long jumps from time to time putting a par-
ticle in the position where the force acting on it is very large.
In this case approximating the deterministic drift by
−�tV��x� is too inaccurate whatever small time step is cho-
sen. It can result in a switch of the particle to the other side
of the origin in such a way that the new particle’s position is
more distant from the origin than the initial one leading to
numerical instability and escape of the particle to infinity
�16�. Of course, this effect is weaker when a smaller integra-
tion step is used. However, taking smaller steps was proven
not to give an effective solution to the problem. Our ap-
proach to it is based on separating noise and deterministic
drift and integrating the last one analytically, by solving the
differential equation ẋ�t�=−V��x� to obtain x�t+�t� for a
given initial condition x�t�. Such a step �involving the solu-
tion of an algebraic equation� is more time consuming than
the Euler integration step and is absolutely superfluous for
small and moderate x. Therefore, the exact integration of the

deterministic part is performed only for large x, �x��xtr,
while the noisy part is always integrated in the standard Eu-
ler way. In the simulations we took xtr=15 as motivated by
analytical estimates and by numerical tests. For testing pur-
poses, constructed numerical results for the Cauchy noise
��=1� were compared with the known analytical solution
�see the right panel of Fig. 3� leading to the excellent level of
agreement.

C. Double well potential

The results for the double-well potential model �see Fig.
2� were constructed by the numerical method described in
the previous section �Sec. III B�. Furthermore, we compared
the influence of a decreasing time step of integration and xtr.
The results of a comparison of both methods of reduction of
the number of numerical escapes are summarized in Fig. 4,
where the influence of the time step of integration �t, dura-
tion of the simulation Tmax on the portion of valid �nones-
caped� trajectories are compared.

Stationary solutions shown in Figs. 5–7 are obtained for
the generic double-well potential model, i.e., V�x�=x4 /4
−x2 /2. In the simulation the whole allowed range of � and �
was examined; in figures only a limited choice of represen-
tative values of noise parameters is presented, namely, the
same as ones used in Tables I–III. For �	1 with ���=1
stable distributions are one sided, therefore, stationary solu-
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0

0.5

1

1.5

2

2.5

3

-3 -2 -1 0 1 2 3

P
(x

)

x

β = -1.0

β = -0.5

β = 0.0

β = 0.5

β = 1.0

FIG. 5. Stationary states for the generic double-well potential
model subjected to the �-stable driving with �=0.5 and various �.
Simulation parameters: N=106, �t=10−3, Nbins=100, xtr=15, and
Tmax=10. Stationary states for totally skewed noise, i.e., �= ±1 are
one sided.

0

0.5

1

1.5

2

2.5

-3 -2 -1 0 1 2 3

P
(x

)

x

β = -1.0

β = -0.5

β = 0.0

β = 0.5

β = 1.0

FIG. 6. The same as in Fig. 5 for �=1.1.

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

-3 -2 -1 0 1 2 3

P
(x

)

x

β = -1.0
β = -0.5
β = 0.0
β = 0.5
β = 1.0

FIG. 7. The same as in Fig. 5 for �=1.8.

DYBIEC, GUDOWSKA-NOWAK, AND SOKOLOV PHYSICAL REVIEW E 76, 041122 �2007�

041122-6



tions for �=0.5 with �= ±1 are different from zero only on
the one side of the origin. For ���	1 stable distributions take
all real values as manifested by nonzero probability for all x
�see Fig. 5�. Furthermore, the symmetry of noise and the
potential is reflected in the symmetry of stationary densities,
i.e., solutions for −� can be constructed by the reflection of
the solutions for � �see Figs. 5–7�. For �=0 with any �,
stationary densities are bimodal and symmetric along x=0.
For ��1, the support of stable densities as well as the sta-
tionary distributions is whole real line. Consequently, even
extreme values of the asymmetry parameter �= ±1 are not
sufficient to switch the probability mass to the one side of the
origin �see Figs. 6 and 7�. Furthermore, it is well documented
in the lower panel of Fig. 8, where P�left�=�−�

0 P�x�dx is
presented. Theoretical considerations as well as the probabil-
ity of being in the left state, P�left�, indicate that stationary
densities can be one sided only for some totally skewed
�-stable noises with small �, i.e., �= ±1 with ��1. For �
�1 with �= ±1 two maxima of stationary PDFs are visible.
In the upper panel of Fig. 8, locations of the median value,
which may be considered as the next measure of asymmetry
of stationary probability densities, are presented.

Very small values of � ��	0.5� pose special difficulties
for simulations. Our simulation of Eq. �4� starts with the
initial condition x�0�=0. The initial transient peak of the
probability density at this value is rather persistent for small
�, so that the simulation time has to be long. On the other
hand, in this case simulations are prone to escape of trajec-
tories to “infinity” due to too strong noise pulses and require
very small �t, so that the overall quality of such results is not
very good. Therefore, the results for �	0.5 are not pre-
sented here.

Another method to present the results for stationary dis-
tributions is the use of the effective potential. In general, the
same stationary probability densities that are recorded for the
double-well system driven by �-stable noise �see Eq. �4��,

can be observed in the Gaussian regime in the effective po-
tential Veff�x�=−ln P�x�. Sample effective potentials corre-
sponding to stationary states for �=1.1 from Fig. 6 are de-
picted in Fig. 9. The same stationary solutions can be
observed for motion in a simple potential, such as double-
well potentials and �-stable stochastic driving or for poten-
tials of the complicated form �see Fig. 9�, and standard white
Gaussian driving. Despite the fact that stationary states are
the same, other characteristics of these two processes are
different.

IV. SUMMARY AND CONCLUSIONS

In the present work we investigated the form of stationary
probability densities of a position of a particle subject to a
deterministic potential force and to a Lévy noise, paying spe-
cial attention to the case of asymmetric stable noises. Sta-
tionary density functions for a system driven by �-stable
Lévy noises ���2�, if they exist, are not of the Boltzmann-
Gibbs form.

For parabolic potential the stationary density functions are
�-stable laws with the same stability index � and asymmetry
parameter � as ones of the noise. The only difference is the
scale parameter of the resulting distribution. Therefore, this
case can serve as a benchmark for our simulation algorithms.
By use of the special software �44� for estimation of stable
law parameters, the parameters of stationary densities have
been evaluated leading to a very good level of agreement
between theoretical and estimated values of parameters. A
natural consequence of the Lévy type of the stationary den-
sities for parabolic potential is divergence of the variance of
the particle position. To produce bounded states, i.e., states
with finite variance of a position, potentials steeper than qua-
dratic are necessary. Thus, for the quartic potential variance
of stationary densities is finite. Furthermore, for white
Cauchy noise analytical solutions to the stationary problem
is known. Here again, numerical results fully agree with
earlier �12,13� theoretical findings.

In the case of Gaussian noise ��=2� the symmetry of
stationary density �being the Boltzmann-Gibbs equilibrium
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distribution� reflects symmetries of the underlying potential:
the asymmetric densities correspond to asymmetric poten-
tials, i.e., to deterministic forces which break the symmetry
of the initial problem. The Gaussian noise itself is always
symmetric. For systems driven by Lévy noises ���2�, an
asymmetric stable noise together with symmetric static po-
tential is sufficient to produce asymmetric stationary densi-
ties. In this situation the asymmetry of stationary states origi-
nates from the asymmetry of the stochastic driving and can
be controlled by changing the parameters of the noise.

Our main studies have been performed for the generic
symmetric double-well potential model. Here the asymmetry
of the stationary distribution �as measured by the probability
of being in the left or right state or location of the median�
was investigated as a function of the parameters of the noise.
The asymmetry of the stationary state decreases with increas-
ing � �see Fig. 8�. Finally, for �=2 with any value of the
asymmetry parameter � Gaussian scenario is recovered and
stationary density is fully symmetric. We also checked
whether stable asymmetric noise can produce unimodal sta-
tionary PDFs in the double-well potential. Such a situation
can indeed be observed for fully asymmetric noises ����=1�
with ��1, e.g., for the Lévy-Smirnoff noise
��=0.5, �=1�.
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APPENDIX: DIMENSIONALITY OF THE LANGEVIN
EQUATION

We have investigated the dynamic stochastic process
modeled by the �overdamped� Langevin equation of the form

ẋ�t� =
f�x�
�m

+ D1/���t� =
f�x�
�m

+ ���t� , �A1�

where x is a position of the particle, � stands for a friction
coefficient, m is the particle’s mass, D ��� represents the

strength of the noise, and ��t� is Lévy stable white noise
characterized by the stability index � ��� �0,2�� and the
asymmetry parameter � ��� �−1,1��. The force acting on a
particle is determined by the external potential,
f�x�=−dV�x� /dx.

Corresponding units in Eq. �A1� are: �x�= �length�, ���
=1/ �t�, �f�x��= �V��x��= �m�
 �length� / �t�2= �force�, �V�x��
= �force�
 �length�= �energy�, �D�= �length�� / �t� ����
= �length� / �t�1/��, and ���t��=1/ �t�1−1/�. Stability index � and
asymmetry parameter � are dimensionless. In the asymptotic
limit of �=2 the Lévy white noise is equivalent to the
Gaussian white noise and it has standards units, i.e.,
���=2�t��= ���t��=1/��t�.

By the set of transformation: t→ t / t0 and x→x /x0. Equa-
tion �A1� can be transformed to the dimensionless form

ẋ�t� = f�x� + D1/���t� = f�x� + ���t� , �A2�

which is of the same type as Eq. �1� because the �rescaled�
noise intensity can be incorporated to the distribution of the
particle’s position increments. An alternative way of getting
a dimensionless form of Eq. �A1� can be found in a recent
work �47�.

For the single-well potential V�x�=axn /n,

t0 =
x0

�

D
, x0 = �D�m

a

1/�n−2+��

. �A3�

Thus V�x�→xn /n and �→1. Therefore, for the single
minima potential, the only relevant parameters are � �stabil-
ity index� and � �asymmetry parameter�.

For the generic double-well potential V�x�=−ax2 /2
+bx4 /4,

t0 =
�m

a
, x0

2 =
�m

bt0
=

a

b
. �A4�

Thus V�x�→−x2 /2+x4 /4 and �→�t0
1/� /x0. In consequence,

for the double-well potential, the only relevant parameters in
a dimensionless form of Eq. �A1� are the Lévy noise param-
eters � and �, and a �rescaled� noise strength. From the
above analysis, it is clear that the choice of x0, t0 introduce
scales to the system which are directly related to its dynami-
cal parameters.
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